引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 619次   下载 1524 本文二维码信息
码上扫一扫!
基于YOLOv5和少样本学习的高空作业安全带检测
石彦鹏,潘作为,成浩天
0
(内蒙古京宁热电有限责任公司,北京京能电力股份有限公司,北京华星恒业电气设备有限公司)
摘要:
针对电厂高空作业人员安全带佩戴检测问题,现有研究大多利用深度检测模型直接检测,不仅需要大量样本训练模型;而且由于高空作业背景杂乱、人员目标小,导致不易检测等。为此,本文提出一种基于目标检测和少样本细粒度分类的两阶段检测方法:首先利用YOLOv5检测视频图像中的高空作业人员,再用少样本细粒度分类方法识别其是否佩戴安全带。针对佩戴和不佩戴安全带人员的细微差别,本文设计了一种基于局部描述符的少样本度量学习模型,在公用数据集预训练模型基础上,利用少量训练样本对模型微调,用于安全带佩戴识别。实验结果表明,在支持集图像数为60时,识别精度达到了97.86%。本文方法可实现少样本情况下对高空作业人员安全带佩戴情况的精确检测。
关键词:  少样本学习  局部描述符  YOLOv5  安全带检测  高空作业
DOI:10.3969/j.issn.1005-9490.2024.01.036
基金项目:
()
Abstract:
Key words:  

用微信扫一扫

用微信扫一扫