引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 505次   下载 1163 本文二维码信息
码上扫一扫!
基于少样本学习和知识迁移的继电保护压板状态识别
赵 明,石恒初,杨远航,成浩天
0
(云南电力调度控制中心,北京华星恒业电气设备有限公司)
摘要:
针对变电站中保护压板开关状态自动识别问题,本文提出了一种基于少样本学习和知识迁移的压板开关状态识别模型,使用残差网络提取图像特征,基于度量方法计算查询图像与支持图像之间的相似度,在此基础上使用KNN实现压板开关状态的分类识别。本文将残差网络在公用数据集上预训练的模型直接迁移到基于少样本学习的压板开关状态的识别任务,并研究了KNN算法中不同的最近邻个数对压板开关状态分类结果的影响。本文方法可在图像样本少的情况下实现压板开关状态的识别。实验结果表明,在支持图像的样本数为30时,图像识别精度达到99.49%。相比于其他大样本的分类方法,本文提出的利用少量样本的分类方法能够实现令人满意的分类效果,提高了图像分类的效率。
关键词:  少样本学习  知识迁移  压板状态识别
DOI:10.3969/j.issn.1005-9490.2024.01.038
基金项目:云南电网有限责任公司科技项目资助,(YNKJXM20191039)。
()
Abstract:
Key words:  

用微信扫一扫

用微信扫一扫